HOMOGENIZED LONG-PERIOD SOUTHERN OSCILLATION INDICES

PETER B. WRIGHT*

Max-Planck Institut für Meteorologie, Bundesstr. 55, D-2000 Hamburg 13, W. Germany

Received 3 February 1988 Revised 25 April 1988

ABSTRACT

Many research workers require indices of the Southern Oscillation that are continuous for a long period, homogeneous and easily updated. This paper aims to provide such indices. The method used is to compare indices based on sea-surface temperature (SST), rainfall and pressure, and thereby to make some corrections to improve homogeneity. To fill data gaps, substitutions are proposed based on regressions between indices over 1950–1979. Tabulations are presented of the recommended long-period indices: SST monthly 1872–1985; rainfall monthly 1893–1983; and pressure seasonal 1851–1984. The most extreme years according to the two monthly indices are listed.

KEY WORDS Southern Oscillation Climatic change Atmospheric circulation Data inhomogeneities

1. INTRODUCTION

The Southern Oscillation (SO) is the dominant pattern of short-term climate variation, and is therefore of great importance in climate studies. It has been the central focus of many studies related to the causes of climate anomalies in many regions (e.g. McBride and Nicholls, 1983; Cadet, 1985), of diagnostic dynamic studies (e.g. Wallace and Gutzler, 1981), and of attempts to model climate variations (e.g. Blackmon *et al.*, 1983; Latif, 1987). For all these purposes, an index of the state of the SO is needed; and for many studies, that index should be available for a long period (100 years or more).

Many indices have been developed. The first (Walker and Bliss, 1932), used several variables, namely pressure, rainfall, and temperature at various places. Most other indices, on the other hand, have been based on a single variable at one or several places. Pressure is the most commonly used variable; Berlage (1957) used pressure at Djakarta as an index, many authors have used Darwin and Tahiti pressures, Wright *et al.* (1985) used Darwin alone, and Wright (1975) used pressure at several stations. Another commonly used index is the sea-surface temperature (SST) anomaly averaged over $5^{\circ}N-5^{\circ}S$, 180–90°W or some closely similar region (e.g. Angell, 1981; Pan and Oort, 1983), or a principal component of SST in which that region plays a major role (Weare, 1986). Rainfall in the Gilbert and/or Line Islands has been used as an index by Meisner (1976) and Wright (1984). Some long-period indices have been based on indirect evidence relating to fisheries and biological variables (see Quinn *et al.*, 1978).

For the period 1950 to date, several indices are available that are considered reliable and homogeneous. The statistical characteristics of some of them have been examined by Wright (1984). Pressure indices have the disadvantage that the month-to-month variability is large, so they are useful only when smoothed in time or averaged over seasons. Indices of SST do not have this disadvantage, and they are therefore more useful for many studies.

When one requires an index for a much longer period, however, one discovers that all the available indices have limitations. Sea temperature indices, for example, are subject to inhomogeneities due to changes in method of measurement (e.g. Barnett, 1984), and also to changes in the density of observations over time.

^{*} Current address: 60 Talfourd Avenue, Reading R96 2BP, U.K.

^{0899-8418/89/010033-22\$11.00}

^{© 1989} by the Royal Meteorological Society

Pressure series suffer from changes in station location, instrument or time of observation (Parker, 1983), or inhomogeneities due to having to combine records from different stations over different periods (Wright, 1975). The pressure index of Wright (1975), available for 1851–1974, has been used in numerous studies; unfortunately, this also has limitations due to its method of construction and to the fact that it cannot be readily updated.

The recent publication of data for Tahiti for most of the period 1876–1934 (Ropelewski and Jones, 1987) has made it possible to consider the use of a pressure index based on Darwin and Tahiti for a long period. Unfortunately this series has several gaps, there are some doubts about the reliability of the Tahiti data over part of the period (Trenberth and Shea, 1987), and the high month-to-month variability characteristic of pressure indices remains.

The purpose of this paper is to provide the best long-period SO indices currently available. The method employed is to take a number of potentially useful indices and to compile long-period series based on them, using comparisons between indices as an aid to identifying and removing inhomogeneities and filling data gaps.

2. DATA

2.1. Basis

As the basis for the proposed indices, the present paper makes use of several data series (Table I) that exist for long periods, are highly correlated, are known to be good indicators of the SO, and have been used in previous studies. The series are described in sections 2.2 to 2.5. Wright (1984) presented statistics of some of these series; further statistics and justifications for the use of these series are given in section 2.6.

2.2. SST index (S) and air temperature index (A)

The SST index is the index defined by Wright (1984) as the mean SST anomaly over the region $6-2^{\circ}N$, $170-90^{\circ}W$; $2^{\circ}N-6^{\circ}S$, $180-90^{\circ}W$; $6-10^{\circ}S$, $150-110^{\circ}W$. It is recalculated here using the 'trimmed' (fully quality-controlled) version of the Comprehensive Ocean-Atmosphere Data Set (COADS) (Woodruff *et al.*, 1987), by averaging anomalies in the relevant 4° latitude by 10° longitude boxes. At least four observations in a 4° × 10° box, and at least two 4° × 10° boxes, were required in order to accept a monthly value. In months when less than two boxes were available, an average was calculated over the larger area $6-2^{\circ}N$, $170-80^{\circ}W$; $2^{\circ}N-6^{\circ}S$, $180-80^{\circ}W$; $6-10^{\circ}S$, $150-80^{\circ}W$; if at least two boxes were available for this area, this average was used as the index. This substitution was used in at least two months in each of the years 1868, 1872, 1879, 1907, 1915–1921, 1938–1941, and 1946, and in 12 isolated months in other years during 1862–1899.

The time series of the index S is likely to have several inhomogeneities due to changes in methods of measurement of SST (Wright, 1986). Jones *et al.* (1986) have attempted to quantify the inhomogeneities for global mean SST, and use will be made of their estimated corrections. The series also becomes more noisy the further back in time one goes, because of large variations in the number of observations made per month (Wright, 1986). The series is also noisy during parts of the World War periods.

Name of element	Region	Section
SST (S)	Central and eastern Equatorial Pacific	2.2
Air temperature (A)	Central and eastern Equatorial Pacific	2.2
Rainfall (R)	Central Equatorial Pacific islands	2.3
Pressure (D)	Darwin, Australia	2.4
Pressure (T)	Tahiti, south Pacific	2.4
Pressure (DT)	Darwin and Tahiti	2.4
Pressure (W)	Up to 8 stations in tropics	2.5

Table I. Basic data series used in this paper

The air temperature index, A, was defined in the same way as the index S but using the COADS air temperature data. This index is also likely to have inhomogeneities, but different ones from those of S. Jones *et al.* (1986) also provided estimated corrections for global air temperatures. The noise variations with time are similar to those of S.

2.3. Rainfall index (R)

The rainfall index R was defined by Wright (1984) as a mean over one to six stations in the central Equatorial Pacific. It contains an inhomogeneity in 1920 due to a change in the reference means, and other inhomogeneities are possible due to changes in the number and selection of stations available.

2.4. Pressure indices (D, T, and DT)

The pressure indices D and T are series of monthly mean pressure anomalies at Darwin (D) and Tahiti (T) as used by Wright (1984) and corrected as described there. In addition use is made of early Tahiti data for 1876–1934 supplied by P. Jones, and identical to those published by Ropelewski and Jones (1987) except that values for the year 1916 are 1.5 mb higher. These data are of uncertain quality, and many values are missing. Darwin pressure is believed to have an inhomogeneity in 1898 (Kidson, 1925). Also, there is conflicting evidence about possible inhomogeneities in and after 1939 (Wright, 1984).

The index DT, defined as D-T, is one version of a number of weighted differences of Darwin and Tahiti pressures that have been devised (see review in Ropelewski and Jones, 1987).

2.5. Pressure index (W)

The pressure index W of Wright (1975) is based on pressures at up to eight stations in the global tropics, and has been used by several authors (e.g. Newell *et al.*, 1982; Hackert and Hastenrath, 1987) in correlation studies. This index was defined for the seasons February, March and April (FMA), May, June and July (MJJ), August, September, and October (ASO), and November, December, and January (NDJ), and each season standardized; it was then quadratically interpolated to a set of values in the standard seasons DJF, MAM, JJA and SON. The latter set is used here. It was attempted to make the series homogeneous, but some inhomogeneities may still be present. This index differs from the others in being defined only for seasons, and in its method of standardization; it therefore requires different treatment.

2.6. Further statistics

The series discussed here are all available for most of the period 1892–1980, and some for periods before and after. Within the period 1950–1979 it is reasonable to assume that each series is homogeneous. Table II shows the inter-series correlations for this period. A conservative approximate estimate of the effective number of degrees of freedom n for the correlations of these highly autocorrelated series may be obtained by applying the following correction to the original number of degrees of freedom N:

$$n = N\left(1-r\right)/(1+r)$$

where r is the lag-1 autocorrelation of the more highly autocorrelated of the pair (World Meteorological Organization, 1966). With this correction, all the correlations quoted in Table II, with the exception of those between monthly Tahiti pressure and the temperatures, are significant at well beyond the 1% level. More relevantly, they are also very high. Correlations between annual values of the series are even higher (Wright, 1984; see Table III). These high correlations imply that all the series, with the partial exception of monthly Tahiti pressure, may be treated as indices of the same phenomenon, namely the Southern Oscillation, and may be used as proxies for each other. For periods before 1950, the data series vary in quality, some markedly so, and they also possess known and, probably, some unknown inhomogeneities. The extent to which proxy relationships are valid for periods before 1950 is discussed in section 3.1.

	A	R	D	Т	DT	W	
Correlations between monthly data during 1950-1979							
S	0.96	0.81	0.63	− 0·47	0.67		
A		0.83	0.61	-0.47	0.66		
R			0.61	-0.44	0.65		
D				-0.34	0.83		
Т					-0.80		
Correl	ations betw V 1950–19	een seaso 74)	nal data a	luring 1950	-1979		
S	0.98	0.87	0.78	-0.67	0.82	-0.82	
Ā		0.89	0.75	-0.67	0.81	-0.79	
R		,	0.74	-0.60	0.77	-0.72	
D			• • •	-0.58	0.91	-0.74	
\overline{T}					-0.87	0.61	
DT						-0.77	

Table II. Simultaneous correlations between the indices listed in Table I

3. METHOD

The high correlations between the indices over 1950–1979 imply that several physical aspects of the Southern Oscillation are closely related. The question then arises; have these physical relationships changed with time? There is abundant evidence that the general pattern of SO relationships has remained the same for at least a century (Berlage, 1957; Quinn *et al.*, 1978; Wright, 1984; Nicholls, 1988), although there is some suggestion that some of the pressure relationships may have varied between decades (e.g. Trenberth and Shea, 1987). The assumption is made here that, if an inhomogeneity is apparent in a time series that represents such a relationship, the inhomogeneity is due to data error and not to climatic change. According to this assumption, the proxy relationships are valid as a means of identifying such data errors.

The proxy relationship is used in two ways. First, one index (A) is used to make an estimate (B_A) of another (B), and the sequence of differences $B - B_A$ is examined to identify inhomogeneities, which are then attributed to data error. Second, gaps in the series of one index are filled using estimates based on another index. To obtain the required estimates, regressions are calculated between pairs of indices for the period 1950-1979, which is used as the reference period and within which the series are assumed to be homogeneous.

The sequence of steps used is as follows. First, the indices are regressed on each other for 1950–1979 (section 4). Annual data are used to obtain the regression coefficients, then these coefficients are treated as applicable both to annual means and to individual months. If the relationships between the indices are found, in the future, to exhibit a substantial seasonal variation, then a detailed seasonally stratified analysis will be necessary to improve the estimates.

Next, modifications are made to the series according to a priori evidence of probable inhomogeneities (section 5). Where the a priori evidence is quantitatively uncertain, further evidence is awaited before making modifications.

Next, the indices are related to each other in pairs (sections 6-8). This is done by using the regression coefficients derived in section 4 to form proxy series, then subtracting these from the actual series and examining the differences. From the series of differences, inhomogeneities are subjectively identified. Since the belief is that there may be many inhomogeneities, some of which are undetectable, it is not considered necessary to restrict attention only to those that can be demonstrated to be statistically significant. What is desirable, however, is that any suspected inhomogeneity be investigated for support by comparison with an independent data set. As a result of this study, a small number of inhomogeneities can be identified and corrected.

Next, a few isolated gaps, and some longer periods during the war years, are filled with estimates based on other series.

Finally, three long-term time series are presented (section 10). The first, denoted S-cap, is a monthly series of the homogenized S with gaps and two periods of poor data filled by estimates from R, D, and A, and is complete for 1881–1985. The second, R-cap, is a similar monthly series for R for 1893–1983, with gaps filled by estimates from S. The third, DT-cap, is a seasonal index representing Darwin minus Tahiti pressure, but based on W for the period 1851–1934; this is complete for 1851–1985.

A few final comments about the presented series are relevant. First, where gaps are filled by estimates, no time smoothing is used. Second, although the method assumes that the physical relationships between S, R, and the pressure field, insofar as they affect variations on time scales of several years, remained constant over the period 1850–1984, it does allow for the possibility that the relationships can vary in individual months, and even for as long as a year at a time (e.g. that the Equatorial Pacific SST could be consistently warmer for a year than would be expected from the state of Darwin pressure).

4. REGRESSION OF INDICES ON EACH OTHER

Annual means were formed from the monthly values of the series S, R, D, and T for 1950–1979, defining the year as April–March (e.g. 1951 refers to April 1951 to March 1952). With these annual means, each index was regressed on each other. The results are given in Table III. The equations given in Table III are used in the subsequent analysis for both annual and monthly data to calculate estimates of one index based on another. For example, rainfall estimated from Darwin pressure is denoted by R_p , and defined by $R_p = 0.329 \text{ D} + 1.02$.

5. CORRECTION OF SERIES ACCORDING TO KNOWN INHOMOGENEITIES

5.1. The SST index

A number of studies (Barnett, 1984; Folland *et al.*, 1984; Wright, 1986) have identified inhomogeneities in SST data sets. In one of the most recent studies, Jones *et al.* (1986) attempted to quantify these inhomogeneities. Their analysis assumed that data from land stations does not have systematic inhomogeneities, that the difference, SST minus air temperature (AT), is constant apart from small random fluctuations, and that SST and AT inhomogeneities were not coincident. From this analysis they concluded that, for the ocean regions as a whole and the year as a whole, SST and AT should be corrected by the amounts shown in Table AI to make them homogeneous with 1950–1979. Stratification by hemisphere showed that the errors were consistent between the two hemispheres, except only in 1941. It must be noted that these errors were determined empirically and cannot be treated as definitive. For the purpose of the present paper, it is

1980 (S in °C, R in per ce	ent/100, <i>D</i> , <i>T</i> in mb
Index	Correlation Coefficient
$\frac{S = 2.20 R - 2.26}{R = 0.39 S + 1.02}$	0.93
S = 0.80 D D = 1.00 S	0.90
R = 0.329 D + 1.02 D = 2.3 R - 2.4	0.87
R = -0.395 T + 1.04 T = -1.5 R + 1.6	-0.78

Table	III.	Regression	of annual	mean indi-
ces on	eac	h other for	April 195	0 to March
1980 (S in '	°C, R in per	r cent/100,	D, T in mb

assumed that these errors apply to the Equatorial Pacific. The relevant changes are made to the index S, to form the resulting series S^1 .

5.2. The rainfall index

The R series is likely to have an inhomogeneity in 1920, because different stations and means were used for the pre- and post-1920 periods. For the two stations common to both periods, the means for 1900–1919 were higher than those for 1948–1967 in most months (table 1 in Wright (1984)). Assume that this difference represents a real climatic change between the two periods, and that this change was uniform spatially and through the year. Then the R data for 1892–1919 should be increased by six percent units to make them homogeneous with the later period. Let this correction be made, and call the resulting series R^1 .

5.3. Darwin pressure

According to Kidson (1925), Darwin pressures up to July 1898 should be increased by about 1 mb to make them homogeneous with the later period. This is not obvious from the time series of D (see Figure 2A). No correction is made at this stage.

6. COMPARISON OF PAIRS OF INDICES

6.1. Rainfall related to Darwin pressure

Comparison between R and D is made by calculating $R^1 - R_D$ (Figure 1A). If the two series are both homogeneous, this quantity should be close to zero in all years. Visual inspection of Figure 1A suggests that 1931–1947 was a little lower than neighbouring periods, and that there were a few years with rather extreme values, especially 1891 and 1901. If the period is divided in accordance with known or suspected inhomogeneities in R or D, the mean values of $R^1 - R_D$ are as shown in column (a) of Table IV.

Some months in several years, but especially during 1891-1901 and in 1920, were based on only one station. It is therefore quite likely that the values of R for those months are unreliable. Two of the most extreme values of $R^1 - R_D$ occurred in those years. If those months are omitted and the analysis repeated, the mean values of $R^1 - R_D$ are as in Table IV column (b). The value of $R^1 - R_D$ is now close to zero throughout 1900–1982, except in 1931–1947. The mean value for 1931–1947 differs significantly at the 1% level from that for the reference period 1950–1979, by the *t*-test. If this is due to data error, it implies that either R^1 was too low by 11 per cent units or that D was too high by 0.34 mb.

Figure 1. Annual (April-March) mean values of: (A) $R^1 - R_D$ (rainfall index corrected by six percent units during 1891–1919, minus estimate of rainfall based on Darwin pressure); (B) $R^2 - R_T$ (same rainfall index but with months based on only one station omitted, minus estimate of rainfall based on Tahiti pressure)

Table IV. Mean values of $R - R_D$ (rainfall index minus its estimate based on Darwin index) in several periods (per cent units). (a); using R^1 (original rainfall index increased by six per cent units during 1891–1919). (b); using R^2 (same but omitting months when rainfall index was based on only one station)

Period (calendar years)	(a)	(b)
1891-1897	-1.9	+ 5.0
1900–1919	- 4·9	-2.9
1920–1930	+3.1	+0.5
1931–1947	-11.1	-11.3
1948–1982	+0.7	+0.7

The result for 1891–1897 in Table IV, column 6, really applies only to 1895–1897, and suggests that either R^1 was too high by 5 per cent units or that D was too low by 0.15 mb. Such an error in D agrees in sense with that already mentioned for periods before 1898 (section 5.3), but is much smaller. To investigate further, monthly values of both D and $D - D_R$ (using R^2 as the reference rainfall series) are presented in Figure 2. No inhomogeneity stands out above the general level of variability of either of these quantities. Therefore, the results in this section do not provide much support for the supposed inhomogeneity in Darwin pressure in 1898.

The lack of a significant change across 1919 provides support for the correction already made to R (section 5.2).

As a result of this comparison, months based on only one station will henceforth be omitted from the rainfall index R^1 , and the resulting series called R^2 .

6.2. Rainfall related to Tahiti pressure

We now compare R with T, by calculating R_T according to Table I. Figure 1B shows $R^2 - R_T$. No inhomogeneity in 1931–1947 is in evidence. This suggests that the previously suspected inhomogeneity is either not real or is in D, not R. During 1900–1930, $R - R_T$ exhibits high amplitude fluctuations which were not present in $R - R_D$, or in data for 1933–1982. This suggests that the early Tahiti record may be less reliable than the later, and not sufficiently reliable for use as a proxy for the other series.

6.3. SST related to Darwin pressure

Figure 3 presents $S^1 - S_D$. The series shows some substantial inhomogeneities, and also a few isolated extreme values. If the period is divided subjectively, taking account of known or suspected inhomogeneities in S or D, the mean values of $S^1 - S_D$ may be summarized as:

(1) 1882-1897, $+0.39^{\circ}$ C; (2) 1899-1916, -0.07° C; (3) 1921-1930, $+0.06^{\circ}$ C; (4) 1931-1947, -0.27° C; (5) 1948-1979, -0.01° C.

In section 6.1 the possibility was noted that D was too high by 0.34 mb during 1931–1947. If D is now corrected by this amount, then the value of $S^1 - S_D$ for period 4 becomes zero. This makes the whole period 1899–1979 homogeneous in terms of period means. This result provides independent support for the Darwin correction, and that will henceforth be adopted. It must be noted nevertheless that the period for which this correction is being applied depends only on the statistical evidence of these comparisons with R and S, and not on any specific knowledge about changes in observational practice at Darwin.

39

Figure 2. Monthly values of: (A) Darwin pressure; (B) $D - D_R$ (Darwin pressure minus estimate of Darwin pressure based on rainfall index R^2)

Figure 3. Annual (April-March) values of $S^1 - S_p$ (SST index minus estimate of SST based on Darwin pressure)

The results of this section, indicating consistency between S^1 and the corrected D from 1899 to 1979, provide encouraging support for the validity of the Jones *et al.* estimates over that period, and for their applicability to a limited region at least on an annual mean basis.

For the period before 1900 there are more uncertainties. The result for 1882–1897 implies that either S is too high by about 0.39° C, or that D is too low by about 0.5 mb. This estimate for D compares with other estimates of 0.15 mb (section 6.1) and 1 mb (section 5.3). For the purpose of this paper, a compromise estimate of +0.7 mb will be adopted as the correction to be made to Darwin pressure for the period up to July 1898; but the uncertainty of this estimate is evident. The Darwin pressure series with the two corrections will be called D^{1} .

Alternatively, the error before 1898 could be in S. After the analyses described in this paper had been completed, Folland and Parker (personal communication) presented some results which suggest that the error in SST before 1940 was a function only of place and season, and did not vary with time as Jones *et al.* had proposed. They suggested that the correction for the central and eastern Equatorial Pacific should average through the year to about 0.35° C. If this correction were made to the period 1882–1897 in place of the values in Table AI, the value of $S^1 - S_D$ would become +0.60, which would in turn result in a Darwin correction of 0.75 mb, nearer to Kidson's estimate. Further analysis of the pre-1900 period is necessary.

6.4. SST related to air temperature

Wright (1986) noted the close correlation between monthly SST and AT anomalies in many areas of the Pacific. As illustration, the correlation between the present indices S and A using monthly data for 1950–1979

is 0.96. For a similar pair of indices defined over an area of the east Atlantic, the correlation is 0.95. This correlation reflects the tendency of the surface air to maintain a constant small temperature difference from the sea surface. It implies that one of the series S or A could be used as a reliable proxy for the other.

The COADS series of both SST and AT have inhomogeneities, but probably not at the same times (Jones *et al.*, 1986). Therefore, a comparison might make it possible to identify inhomogeneities in SST. Jones *et al.* made such a comparison using global means. If the series S and A are both corrected according to Jones *et al.*'s global values, the difference in the resulting annual means is given by Figure 4a. The strong autocorrelation of this A - S series implies that some inhomogeneities still exist in either S or A. Even within the last 25 years there is an appreciable fluctuation of A - S that deserves attention as a possible inhomogeneity.

Repeating the analysis for the Atlantic area gives Figure 4b. In this case there are apparently few substantial inhomogeneities, and those are mostly before 1890. There is also no correlation between the A - S series for the two regions.

Thus there appear to be some inhomogeneities in either S or A, or both, that are regionally dependent and not removed by the Jones *et al.* corrections. Unfortunately this analysis does not provide any guide to specific further adjustments to S.

When S is missing, A may be used as a proxy for S. There were 7 months during 1859–1881 when this was possible.

7. RELATIONS BETWEEN THE PRESSURE INDEX W AND THE OTHER INDICES

The following analyses for W compared with S^1 , R^2 , and D^1 were done for each season separately.

First, W was regressed on S^1 , R^2 , and D^1 individually for the period 1946–1974. Using the regression coefficients, the series W_S , W_R , and W_D were obtained for all available years. (Again, W_S denotes 'W as estimated by S', etc.) Then $V \equiv$ the mean of $W - W_S$, $W - W_R$, and $W - W_D$ was calculated. The values of V for the four seasons are shown in Figure 5.

There appear to be some systematic features in these time series. For example, they are relatively low around 1900 and around 1940. If S, R, and D are assumed homogeneous, this implies that W was too low in those periods. There is also a suggestion that W was too low in the earlier years; the trend from 1882 to 1973 was upward in all seasons, significantly so in DJF and SON. The mean values of V over several arbitrarily chosen periods were as in Table V. Based on this table, the following corrections to W will be adopted: in 1850–1910, add 0.35 to W; in 1911–1946, add 0.18 to W. Since no specific cause of inhomogeneity has been identified, these corrections are somewhat arbitrary. It may be claimed only that the resulting series (called W^1) is likely to be more homogeneous than the series without the corrections.

Figure 4. Annual (January-December) mean values of air temperature minus SST for; (A) Equatorial central and east Pacific; (B) Equatorial east Atlantic

Figure 5. Values of $V \equiv$ 'error' in W (see section 7) for each season separately

Table V.	Mean values of $V \equiv \text{error in } W$ in each
	season over four periods

······	DIF	MAM	IIA	SON
1003 1003	0.47	0.20	0.26	0.20
1882-1893	-0.47 -0.46	-0.29 -0.34	-0.20 -0.43	-0.39 -0.33
1911–1946	-0.15	-0.37	-0.14	-0.24
1947-1975	0.01	0.00	0.01	0.05

8. RELATIONS BETWEEN TAHITI PRESSURE T AND OTHER SERIES

8.1. T related to R

Relationships between T and R were discussed in section 6.2, where it was suggested that the early Tahiti record published by Ropelewski and Jones (1987) may be less reliable than the later record.

8.2. T related to D and S

Table VI shows correlations of T with D^1 and S^1 in each decade. The relations with Darwin pressure have also been noted by Trenberth and Shea (1987). The pattern is rather similar for the two indices.

The interdecadal variations in the correlations since 1940 suggest that natural variations in the physical relationships between T and the other components of the SO are considerable. Nevertheless, the general level of correlation in the earlier decades was lower than in the later, supporting the suggestion that parts of the earlier T record may be less reliable.

	With S	With D
1890-1899	-0.08	-0.11
1900-1909	-0.51	-0.13
1910–1919	-0.39	-0.41
1920-1929	-0.40	-0.18
1930–1939	0.15	0.02
1940-1949	-0.33	-0.35
1950–1959	-0.52	-0.36
1960–1969	-0.34	-0.16
1970-1979	-0.54	-0.45
1876-1934	-0.19	-0.15
1935–1984	-0.43	-0.36

Table VI. Correlation of T with S^1 and D^1 , monthly values, all months

8.3. DT related to W

The regression of DT (using $D^1 - T$) on W^1 for 1935–1974 is as follows:

- (a) for DJF, DT = -0.16W + 0.04 (correlation coefficient = -0.78);
- (b) for MAM, DT = -0.08W + 0.01 (correlation coefficient = -0.57);
- (c) for JJA, DT = -0.10W + 0.02 (correlation coefficient = -0.80);
- (d) for SON, DT = -0.13W + 0.03 (correlation coefficient = -0.84).

The two indices are related most poorly in MAM; however, this is the season when most of the SO relationships are weakest, and it may be that the SO pressure-anomaly pattern is itself poorly defined at this season. Figure 6 shows the time series of DT, together with the estimate of DT based on W according to these equations.

Table VII shows that in only two seasons were the correlations between the two indices substantially lower in the earlier period. Therefore, from this evidence it is by no means evident that the earlier Tahiti record is substantially less reliable.

8.4. Summary

The Tahiti record for the period 1876–1934 may be less reliable than that for 1935 to date. However, this characteristic is clearly apparent only in monthly data, and must be seen in the context of the inherent instability of all SO pressure indices used on a monthly basis. There also appears to be a considerable natural variation in the relation between Tahiti pressure and other features of the SO.

9. SUMMARY OF RESULTS

The series R, D, S, and W have been assessed relative to each other. The following corrections have been proposed to make them more homogeneous.

- (1) To S, change according to the estimates of Jones et al. (Table AI).
- (2) To D, add 0.7 mb to all values from the start until July 1898; subtract 0.34 mb from all values during 1931-1947.
- (3) To R, add six per cent units to all values during 1892–1919, and use only values based on at least two stations.
- (4) To W, add 0.35 to all values during 1850-1910; and 0.18 to all values during 1911-1946.

Figure 6. Seasonal values of: (a) D^1 minus T (Darwin pressure corrected, minus Tahiti pressure); (B) Estimated value of Darwin minus Tahiti pressure index using regression on W

	DJF	MAM	JJA	SON	
1882-1934	0.76	0.63	0.60	0.73	
1935–1974	0.78	0.67	0.80	0.84	

Table	VII.	Correlation	between	DT	and	W	ir
		differen	t periods				

The following qualifications apply:

- (a) in all series except perhaps D, confidence in their reliability decreases as one goes back in time;
- (b) S is relatively unreliable and has several missing values during 1914–1918 and 1938–1941, because there were many fewer ship observations in those periods. R is less reliable in various months during 1893–1915, 1919–1921, 1925–1927, 1941–1946 and 1981–1983 when it is based on only two stations;
- (c) the Tahiti data for 1876–1934 are probably less reliable than those for the later period;
- (d) no attempt has been made to homogenize the series with respect to variance.

10.1. Introduction

The purpose of this work has been to provide the research worker with the best available indices of the SO with respect to homogeneity, length of series and ease of updating, for each individual month, season or year. To this end, the following indices are recommended to users.

10.2. Monthly indices

The homogenized series of S produced here is believed to be the best available, monthly, long-period index of the SO, because it is nearly complete from 1880 to date, it has high month-to-month autocorrelation and it represents a clearly defined physical entity. It is also easily updated from, for example, the CSM Monthly Bulletin (World Climate Program, 1984–present). This series is presented as the unbracketed values in Table AII, and its validity as an estimate of SST does not depend on the assumption that SO physical relationships have remained constant.

Users who desire a series without any gaps may use the complete series in Table AII, referred to as S-cap. The bracketed values are the regressed value of R, or, when not available, D. In two periods (1914–1918 and October 1938 to December 1941) the series for S was clearly statistically inhomogeneous due to poor data, and the value of S_R was chosen to be used for S-cap. Within the period 1854–1880, index A was also used to fill a few gaps, but many gaps remain, especially before 1872 (not presented).

An alternative monthly index, and one that depends only on atmospheric information, is given by the homogenized R, presented as unbracketed in Table AIII for 1893–1983. The bracketed values are R_s , and the resulting series R-cap is complete from October 1893 to August 1983.

In both S-cap and R-cap the filling has been done using only data for the relevant month, so as to avoid introducing statistical characteristics such as autocorrelation. Nevertheless, since R and especially D are more variable than S, a better estimate of S in missing months might be obtained by averaging the values of S in adjacent months.

10.3. A long-period atmospheric index

The user who requires an index based on atmospheric pressure must accept that only seasonal values may realistically be used, since intermonthly variability is large. Presently available long-period indices are: (i) W,

Figure 7. Annual (June-February) mean values of filled and homogenized series (see section 10). (A) S-cap; (B) R-cap; (C) DT-cap.

109709088, 1989, 1, Downloaded from https://mets.onlinelibary.wiley.com/doi/01002/joc.3370909104 by MPI 348 Meterology; Wiley Online Libary on [20/06/2023]. See the Terms and Conditions (https://oinlinelibary.wiley.com/doi/oi.o) on Wiley Online Libary for rules of use; O A ratices are governed by the applicable Creative Commons License

Table VIII. (a) The extreme decile years during 1872–1985, according to the filled homogenized SST index (S-cap). Years are defined as April of the given year to March of the next year. Left, warm years; right, cold years (b) Periods when successive years (April–March) were all relatively extreme. Left, warm events (each year at least 0.5° C); right, cold events (each year at most -0.5° C)

(a) Year	Index (°C)	Year	Index (°C)		
1877	1.87	1874	-1.13		
1982	1.50	1955	-1.08		
1902	1.28	1916	-1.02		
1972	1.28	1886	-1.00		
1940	1.27	1875	-0·99		
1914	1.19	1892	-0.96		
1905	1.18	1909	-0.91		
1888	1.04	1873	-0.88		
1896	1.04	1975	-0.88		
1957	1.01	1973	-0.86		
1965	0.99	1954	-0.84		
(b) Period	Mean	Years	Period	Mean	Years
1982-1983	3 1.05	2	1872-1875	-0.94	4
1904-1905	5 0.94	2	1954-1956	-0.81	3
1939-1941	0.90	3	1916-1917	-0.79	2
1913–1914	↓ 0·87	2	1908-1910	-0.78	3
1899-1900) 0.79	2	1892-1894	-0.77	3
1918–1919	9 0.74	2	1970-1971	-0.63	2
			1949-1950	-0.59	2

complete for 1851–1974 but difficult to update; (ii) some linear combination of Darwin and Tahiti pressures, complete for 1935 to date, and now available also for 1882–1934 but with some gaps and some questions of reliability. To derive an ideal and complete pressure index would require a thorough analysis of the series for Darwin, Tahiti, Djakarta and Apia, comparing them to identify inhomogeneities and using some as substitutes for others when missing. Here is proposed, as a convenient long-period pressure index, the following series DT-cap: for the period 1935 to date, use DT, where D has been corrected as described in section 9 (this may be updated from the CSM Monthly Bulletin); for the period 1851–1934, correct W as described in section 9, then convert it to DT using the regression formulae in section 8.3. The resulting seasonal series of DT-cap is presented in Table AIV.

10.4. Summary of final indices

Figure 7 provides a summary of the three final indices, in the form of time series of annual values. The period June-February was used in this case for averaging because the relationships between the indices during March-May, especially those involving DT-cap, are less consistent. The correlations of the series in Figure 7 for 1893-1982 are: S-cap with R-cap, 0.92; S-cap with DT-cap, 0.89; R-cap with DT-cap, 0.88.

11. CONCLUDING REMARKS

By the time the present paper was ready for final submission, it was already evident that a number of further improvements were desirable and possible. These include: possible modifications to the period before 1900

47

10970088, 1989, 1, Downloaded from https://mets.onlinelibrary.wiley.com/doi/10.1002/joc.3370090104 by MPI 348 Meteorology, Wiley Online Library on [2006/2023]. See the Terms and Conditions (https://onlinelibrary.wiley.com/doi/10.1002/joc.3370090104 by MPI 348 Meteorology, Wiley Online Library on [2006/2023]. See the Terms and Conditions (https://onlinelibrary.wiley.com/doi/10.1002/joc.3370090104 by MPI 348 Meteorology, Wiley Online Library on [2006/2023]. See the Terms and Conditions (https://onlinelibrary.wiley.com/doi/10.1002/joc.3370090104 by MPI 348 Meteorology, Wiley Online Library on [2006/2023]. See the Terms and Conditions (https://onlinelibrary.wiley.com/doi/10.1002/joc.3370090104 by MPI 348 Meteorology, Wiley Online Library on [2006/2023].

based on new studies of SST errors; a more comprehensive analysis of related pressure stations (e.g. Djakarta, Apia) to investigate inhomogeneities in Darwin pressure further; and perhaps a seasonal stratification of the relationships. The claim is made here that the series presented are the most homogeneous long-period indices of the SO hitherto published, nevertheless they are capable of further improvement. It is important for climatic-change studies to obtain homogeneous series not only of particular indices such as the SO, but also of data sets such as SST that are subject to systematic errors. The high correlation between indices based on different physical features can, as in the present paper, provide a valuable tool for helping to obtain independent estimates of such errors. **12. EXTREME EVENTS** As a simple application, the monthly indices will be used to identify extreme warm and cold events. First, from S-cap, form annual values for April-March, requiring at least 6 months of data. This series is complete for 1872–1985. Table VIIa lists the 11 extreme warmest and 11 extreme coldest events according to this series. There is a clear bias towards higher amplitude extremes in the warm events than in the cold. According to these data, the recent 1982–1983 warm event was a little weaker than that of 1877–1878. Also listed (Table VIIIb) are the spells in which each year was above 0.5° C or below -0.5° C. Based on this statistic the 1982–1983 period was the warmest 2-year period in the record. Only one warm period spanned 3 years, but several cold periods did. This implies that extreme cold periods, though less intense than warm ones, often last longer. Table IX presents the same statistics based on R-cap, which is complete for 1893-1982. Table IX. (a) The extreme decile years

(April–March) during 1893–1982 according to the filled homogenized rainfall index (R-cap). Left, wet years; right, dry years. (b) Periods when successive years (April–March) were all relatively extreme. Left, wet periods (each year at least 120 per cent units); right, dry periods (each year at most 80 per cent units)

(a) Year	Per cent units	Year	Per cent units
1982	164	1916	54
1972	162	1973	60
1940	160	1949	63
1910	157	1893	65
1957	152	1942	65
1965	147	1970	65
1919	144	1924	69
1918	143	1938	69
1976	142		

(b) Period	Mean	Years	Period	Mean	Years
1918-1919	143	2	1916-1917	67	2
1939-1941	143	3	1949-1950	67	2
1913-1914	142	2	1954-1955	71	2
1976–1977	135	2	1908-1909	72	2
1904-1905	133	2	1893-1894	73	2
1979–1980	125	2			

ACKNOWLEDGEMENTS

I thank P. D. Jones, S. Hastenrath, B. Santer and K. E. Trenberth for helpful comments. I also thank a reviewer for suggestions that helped in developing the sequence of ideas in the paper more clearly.

APPENDIX

Table AI. Corrections made to S and A ($^{\circ}$ C) as determined by Jones *et al.* (1986) for global means

Period	Correlation to S	Correlation to A		
1861-1873	+ 0.08	-0.40		
1874–1889	+0.08	-0.48		
1890-1902	linear	linear		
1903-1940	+0.49	+0.17		
1941	+0.34	± 0.17		
19421945	-0.10	-0.54		

Table AII. Unbracketed values: homogenized S series. All values: S-cap (homogenized S, with gaps and periods of poor data filled with estimates based on R, D, or A). 'M' denotes missing data

	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	OCT	NOV	DEC
1872	-4	69	М	М	71	-110	M	14	-117	-99	-115	- 80
1873	-102	-106	[33]	Μ	М	Μ	-48	- 36	Μ	80	-103	-150
1874	M	-124	-78	-186	М	-36	Μ	147	М	- 124	-127	Μ
1875	М	-125	-47	-72	- 68	Μ	-52	Μ	-73	М	-180	- 79
1876	M	99	-172	-156	46	Μ	21	9	15	21	11	21
1877	83	50	M	Μ	67	[247]	Μ	105	137	155	Μ	257
1878	319	207	M	101	Μ	Μ	41	0	-27	- 57	Μ	-63
1879	М	17	- 39	-49	-28	-108	55	-65	-51	- 54	-93	-85
1880	-160	-20	-9	M	Μ	-37	-68	10	15	72	6	36
1881	32	14	37	29	-26	[99]	43	-46	53	-62	-41	-48
1882	-65	74	7	-5	2	-82	-71	-122	- 36	-102	-68	-87
1883	-53	42	9	18	6	-37	-11	10	-35	-45	-41	-43
1884	-51	-42	33	-21	5	-46	-13	5	6	96	66	74
1885	60	-17	-17	- 29	10	18	-43	-20	46	26	78	34
1886	13	-37	46	-152	[48]	- 98	-111	-81	-85	-116	-120	-125
1000	-108	- 139	-16	-80	- 39	-67	- 53	-68	-45	-18	-18	-11
1888	205	45	31	36	46	64	39	41	95	154	152	198
1889	205	170	48	85	44	14	-28	-65	-74	- 139	-134	-74
1890	-5/	20	- 134	- 70	- 59	- /1	-83	- 76	-64	- 38	- 96	-2
1891	- /	20	- 19	54	43	18	14	[160]	-40	- 3	3	-3
1092	- 10 E - 201	126	-21	18	50	- 98		- 96	- 101	- 129	-132	- 95
1093	[-00]	- 130	- 102	-103	-122	-85	- 38	- 101	80	[-105]	- 89	-92
1094		0	- 75	30	30	-02	- 24	- 40	- 39	-8/	- 38	- 80
1806	[-30] 52	- 63	- 31	-11	23	22	-21	39	114	3/	8/	4/
1807	160	10	51	70	11	22	84 29	155	114	110	105	1/0
1897	- 26	-134	. 52	79	22	- I 43	20	-17	11	- 33	- 31	- 30
1899	- 20	- 134	- 64	- 40	- 26	-43	- 38	-07	- 24	30	- /1	- 03
1900	-07	137	04		20		23 78	20	104	232	104	108
1901	56	33	_15	25	1	12		- 11	70	00	10	08
1902	52	51	-15	70	61	70	146	- 11	176	177	172	160
1903	170	117	101	14	20	_17	- 66	- 70	_47		51	
1904	- 52	-5	0	-21	16	19	80	87	68	118	100	110
1905	97	98	92	77	155	151	135	82	164	127	112	122
1906	142	95	48	110	23	2	15	67	- 38	-67	_ 90	_ 20
1907	-45	- 55	-65	-42	16	20	-19	0	91	- 57	28	- 20
1908	- 58	42	-23	-32	-43	-95	84	-47	-117	-71	59	- 77
1909	-83	-129	-46	-49	86	-81	- 54	- 78	-77	108	-132	-117
1910	-117	-82	-107	-123	78	- 82	-48	- 52	-83	-36	-67	-55
1911	- 69	-72	-63	-80	14	1	53	88	106	111	138	215
1912	122	87	58	91	37	-24	19	- 58	26	-7	29	-18
1913	- 38	15	3	-11	49	26	34	21	43	42	52	106
[1914	139	106	168	93	141	93	67	53	86	207	161	148]
[1915	133	93	148	111	104	3	-28	87	-15	175	-125	— 70Ī
[1916	9	- 101	- 57	- 109	-107	- 79	-85	94	-96	-96	-127	-1251
[1917	-149	-103	-114	- 24	76	1	-46	- 59	9	- 103	-85	-43]
[1918	-125	-96	25	-8	16	16	58	139	82	133	82	106]
1919	[111]	120	[141]	[148]	113	136	32	17	27	60	-31	4 0
1920	76	[111]	52	41	57	-29	-91	-13	27	-14	13	-13
1921	64	- 17	-87	-11	-12	13	12	23	7	3	-75	36
1922	- 53		-9	31	31	-97	33	- 25	-52	- 84	-94	-17
1923	- 38	-84	6	23	44	10	24	51	83	90	107	68
1924	36	8	26	_1	-64	- 58	-97	- 69	-63	-98	-99	- 51
1925	-117	-84	-36	- 79	8	5	47	44	70	68	103	144
1926	120	89	82	88	45	8	42	22	-4	-47	-55	- 50
1927	48	30	-16	-44	8	12	-25	10	16	46	22	24
1928	15	5	-10	0	8	-29	-23	-2	12	-8	-10	1

Table AII. (continued)

	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	OCT	NOV	DEC
1929	-61	- 39	0	4	-23	25	11	19	27	37	52	27
1930	25	20	18	28	29	20	70	60	102	129	164	153
1931	147	102	89	93	55	36	31	18	-22	- 66	-29	-33
1932	-22	1	54	21	67	41	9	17	18	27	- 5	-8
1933	-7	0	-28	15	-25	-40	- 56	49	-50	-93	-85	-97
1934	-48	90	- 48	-16	-9	-5	-12	14	-18	-12	-23	-48
1935	-53	-26	-29	-35	-21	- 22	- 44	22	-1	21	-8	- 39
1936	.7	16	1	7	8	-28	-5		-4	50	-6	6
1937	-47	-25	4	- 39	- 18	-9	16	- 3	1/		5	г о л э
1938	- 56	- 39		-13	- 39	00	- 58	- 09	- /8	[-112]	[-40]	[-0/]
[1939 [1040	-03	-92	- 79	-21	31 71	5	47	50 67	40	227	95	1007
[1940 [1041	166	191	102	84	20 20	93	58	60	150	82	135	1261
1042	67	101	27	0 4 45	1		_46	71	_ 98	141	_140 _150	- 135
1942	_126	-102	-110	-68	_19	-35		/ 1	-8	61	-66	- 39
1944	-63	1	1	25	22	33	45	14	2	-53	-45	-32
1945	- 33	- 19	-95	-135	4	[7]	-51	68	-32^{-}	-60	5	[-32]
1946	[3]	[5]	10	32	40	-127	- 38	54	37	-8	-36	-26
1947	-6	5	9	7	15	14	-26	- 35	-26	-40	-21	-32
1948	-2	21	39	34	24	4	-81	- 36	- 66	- 70	-5	-1
1949	-42	17	-23	99	14	44	- 40	-35	-70	-67	-141	-83
1950	- 104	-148	-25	- 54	-115	-71	-85	59	-77	-45	-110	- 79
1951	-45	-21	-21	15	32	33	98	101	74	89	132	88
1952	69	53	12	56	-6	-20	-10	10	19	23	-3	- 30
1953	54	32	37	101	56	51	60	16	67	9	54	8
1954	4	5	12	-95	-73	-101	-110	92	- 86	- 106	8/	101
1955	-65	-27	-67	- 59	- 98	- 104	-90	64	-132	- 160	- 185	- 132
1956	- 139	-64	-6/	-62	-5/	- 55	- 60	72	- 13	- 52	84	- 03
1957	- 58	120	24	60	80 50	00 54	90 ∕\2	123	_2	20	22	54
1930	41	40	90 27	42	29	-3	- 25	12		30	22	-7
1960	-9	7	7	23	23	-10^{-10}	-1	22	18	-17	-23	-20
1961	-17	29	Ó	21	- 1	43	38	35	-71	-82	-27	-32
1962	-22	-16	$-3\tilde{7}$	-44	-35	-21	-7	0	-26	-30	-33	-63
1963	-43	-36	1	18	6	27	81	74	86	86	104	102
1964	68	26	-17	- 37	-83	92	-46	- 82	-75	-58	-94	-95
1965	- 52	- 10	4	13	66	84	92	118	126	146	142	147
1966	110	82	62	39	-15	24	22	10	$^{-2}$	-7	-27	-33
1967	-42	-20	- 36	-45	-4	23	-16	-37	-66	- 59	- 50	- 52
1968	- 76	-87	-72	- 34	-46	_1	38	43	28	33	65	75
1969	98	67	60	53	103	72	38	57	73	90	89	109
1970	89	48	17	41	1	-45	- 90	- 80	-8/	-80	- 110	- 133
1971	-117	-111	- 88	- 55	-4/	- 53	54	- 59	-00	-03	- 64	- 80
1972	- 38	-0	4	48	82	84 70	75	86	_ 43		- 129	- 129
1973	159	11/	57 60	- 10	- 50		-32	26	- 92	-60	-64	-63
1974	-144	- 30	- 09 - 49	- 30	48	-91	- 76	79	-96	-118	-107	-135
1976	- 137	86	-49	-28	_9	29	48	70	70	96	86	66
1977	- 137	45	46	20	34	27	23	15	29	57	62	59
1978	67	23	6	-23	-12	- 49	-27	42	-18	-8	-5	35
1979	3	11	40	35	42	53	12	18	100	42	45	59
1980	47	40	24	28	39	58	24	14	18	7	35	53
1981	-23	-44	-20	-35	-14	1	- 30	48	7	24	- 19	25
1982	31	29	22	37	76	. 98	70	97	136	184	192	250
1983	221	187	167	141	164	155	81	84	60	-16	-45	-9
1984	-24	31	-14	-5		-33	-2	2	23	- 35	-31	-42
1985	- 59	-27	-37	-50	- 51	- 30	15 17	21	- 20	-43	- 29	-4
1980	- 38	9	3			- /					104	

 Table AIII. Unbracketed values: homogenized R series. All values: R-cap (homogenized R, with gaps filled with estimates based on S). 'M' denotes missing data

_												
	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	OCT	NOV	DEC
1893	M	М	M	М	М	М	М	М	М	55	60	92
1894	47	54	81	83	84	122	67	[84]	[87]	[68]	[87]	[71]
1895	80	85	90	56	76	88	67	73	[132]	96	128	Ē 99
1896	79	78	115	107	119	86	101	101	114	137	128	166
1897	107	149	121	[71]	[104]	[102]	136	107	94	60	98	86
1898	46	[50]	70	100	69	[85]	79	73	78	104	[74]	41
1899	46	79	59	101	92	123	125	135	99	183	110	109
1900	149	157	130	125	142	127	122	134	95	60	81	62
1901	[124]		[96]	[112]	[102]	[10/]	[89]	/8	69	57	64 220	83
1902	15	81	[118]	[129]	140	128	129	[40 [75]	100	149	229 F801	E607
1903	1.34 F921	E1007	00 56	72	107	04	105	130	136	126	154	150
1904	159	142	126	153	150	160	142	130	150	165	146	136
1905	119	135	97	84	80	88	77	92	69	78	140	103
1907	56	74	89	94	71	F1107	101	91	83	119	126	81
1908	95	86	45	60	65	105	76	95	72	53	55	76
1909	61	56	81	59	76	83	110	101	71	40	78	61
1910	53	69	71	71	102	78	89	87	63	88	62	61
1911	100	77	153	144	105	118	120	111	134	163	106	191
1912	137	171	144	146	125	117	129	90	115	155	117	105
1913	101	123	70	65	91	91	114	124	124	145	137	135
1914	166	151	179	145	167	145	133	127	142	197	176	170
1915	163	145	170	153	150	104	90	63	96	23	46	71
1916	107	57	77	53	54	67	64	60	59	59	45	46
1917	35	56	51	92	68	103	82	76	107	56	64	83
1918	46	59	114	99	110	110	129	166	140	103	140	151
1919	153	187	167	1/0	131	140	130	152	109 F1127	1/4	130	129
1920	120	153	100	104	50	150	[0/]	[97]	100	[14]	100	[97]
1921	120	114	54	52 08	110	100	90 101	101	100	36	03	133
1922	60	73	107	105	60	109	121	146	126	147	163	138
1923	147	112	107	52	90	84	86	81	63	103	50	25
1925	50	79	64	45	89	114	103	123	120	182	133	E1587
1926	148	151	[134]	E136]	134	120	109	138	94	84	126	47
1927	45	44	55	51	83	92	118	89	100	78	117	131
1928	151	126	64	81	54	75	90	83	113	98	113	112
1929	91	131	82	74	95	106	126	135	99	105	142	135
1930	133	138	139	83	84	115	137	152	191	169	177	146
1931	147	130	136	99	96	125	79	108	71	93	65	80
1932	117	126	129	104	107	100	107	107	101	33	59	43
1933	114	75	86	88	90	109	125	90	52	62	53	18
1934	43	46	75	68	78	119	109	93	63	68	76	90
1935	99	103	73	67	94	100	114	85	104	117	93	110
1936	119	128	113	91	86	74	96	99	96	76	155	103
1937	96	107	95	70	85	111	111	101	129	96	77	49
1938	87	65	55	65	63	85	/4	85	52	52	82	03
1939	/4	61	6/ 140	93	11/	105	124	120	121	204	145	103
1940	133	137	149	131	133	140	133	130	145	200	160	160
1941	[128]	E1207	111	90	86	83	42	85	42	53	55	56
1943	<u>ر</u> ہتے ۲۵	81	52	92	103	109	108	120	65	79	82	101
1944	121	90	92	101	118	114	102	85	84	91	59	86
1945	51	67	96	76	113	106	133	84	69	78	48	88
1946	104	105	117	118	123	133	126	127	79	119	135	79
1947	105	103	66	97	94	106	94	89	76	85	100	97
1948	107	120	140	147	143	132	93	97	74	72	123	117
1949	84	119	120	103	99	76	80	60	74	61	53	44
1950	22	42	42	65	51	79	73	90	60	56	60	60

Table AIII. (continued)

	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	OCT	NOV	DEC
1951	94	82	97	112	138	136	120	140	123	129	92	131
1952	104	93	102	101	105	106	93	112	111	66	108	115
1953	113	144	122	130	155	119	116	125	138	144	119	116
1954	97	90	90	88	65	64	76	83	67	58	43	51
1955	107	61	91	82	77	90	89	69	99	52	42	55
1956	66	55	74	95	101	91	79	99	97	96	88	71
1957	72	75	89	104	140	144	134	105	146	175	201	190
1958	167	166	149	130	131	121	128	109	85	86	110	127
1959	120	135	113	101	95	92	81	69	82	85	108	87
1960	109	123	89	98	106	79	98	95	81	115	96	104
1961	104	103	103	101	108	117	113	118	92	100	98	57
1962	59	62	85	98	104	81	111	84	109	71	104	72
1963	67	68	74	79	69	94	108	129	151	180	136	158
1964	158	137	107	56	50	56	58	89	78	75	66	80
1965	105	117	114	107	101	124	132	149	178	189	182	159
1966	168	140	132	114	87	103	116	92	67	83	87	96
1967	75	68	66	87	74	96	100	85	85	102	84	113
1968	89	84	42	59	40	65	107	61	85	98	113	93
1969	114	115	124	129	118	106	86	90	111	100	114	109
1970	117	117	117	124	103	77	59	70	48	53	48	39
1971	41	61	52	87	84	110	87	90	69	87	60	107
1972	94	92	82	99	122	130	148	159	191	203	223	191
1973	181	173	124	92	108	83	37	79	69	57	16	41
1974	24	67	47	70	104	101	122	85	75	104	61	101
1975	106	102	120	94	93	101	80	66	72	45	45	55
1976	60	77	116	104	129	132	138	150	150	165	155	156
1977	156	135	132	128	119	105	131	119	115	126	160	161
1978	136	130	112	98	73	78	72	73	88	80	78	123
1979	1.38	141	128	99	111	120	99	108	117	173	141	136
1980	126	114	143	135	130	127	118	133	115	120	149	135
1981	116	120	120	110	112	128	69	103	146	121	90	135
1982	51	96	65	109	139	107	154	197	184	260	255	208
1983	181	97	73	93	160	142	142	106	М	М	М	Μ

	DJF	MAM	JJA	SON		DJF	MAM	JJA	SON	
1851	- 499	_ 999	-21	2	1904	- 14	-8	5	10	
1852	-16	-10	-3	11	1905	35	14	9	6	
1853	12	-4	12	13	1906	22	2	-9	6	
1854	-3	3	-5	-8	1907	-7	1	2	3 3	
1855	15	9	15	15	1908	1	-7	-1	-10	
1856	31	-3	11	9	1909	8	9	-18	-14	
1857	-8	-8	-6	14	1910	-16	-17	- 14	-15	
1858	12	ŏ	_9	-1	1911	-12	7	10	14	
1859	-2	5	4	4	1912	15	, 7	-3	1	
1860	-13	-4	- 3	-1	1913	4	_4	9	14	
1861	-15	-11	16	3	1914	31	10	17	26	
1862	-20	-11	11	-23	1915	18	8	_13	- 14	
1863	- 32	-17	15	-6	1916	_11	_11	_ 28	30	
1864	-1	6	11	7	1917	36	-16	-20 -26	- 31	
1865	19	2	5	_ '	1918	15	- 10	20	14	
1866	1	-1	2	_1	1910	17	8	4	14	
1867	21	1	_8	_7	1920	10	_2	_0		
1868	28	11	18	18	1920	_ 20	11		- 2	
1869	20	7	10	7	1921		_7	- 12	- 2	
1870		11	_0	_15	1073	11	— / 	-6	10	
1870	_14	_ 3	-5	7	1923	-11	_6	-0	10	
1872	- 14		-15	-20	1924	_ 9	-0	-0	19	
1872	- 10	- ,	-15	-20	1925	0	- 0	1	10	
1873	- 55	-0	14	20	1920	-10	13	-1	-0	
1875	7	9	- 14	- 20	1028	-10	- 8	0	4	
1875	_13	— ,	12	- 5	1920	. 2	-4	7	-0	
1877	-13		12	10	1929		5	1/	14	
1878	20	8	-7	_ <u>-</u> 27	1031	3	6	14	14	
1870	-16	_4	- 12	-27	1037	15	2	3	- /	
1880	- 25		- 12	10	1033	- 7	_5		_ 16	
1881	-25	12	o o	2	103/		_5	- u 2	- 10	
1887	12	12	1/	8	1035	-25	- 5		11	
1992	- 12	- /	- 14		1935	2	- 0	-1		
1994	-0	- 3	- 5	2	1027	3	-14	1	1	
1004	0	1	12	11	1029	4	0	-1	14	
1996	11	-1	13	22	1938	-13	12	- 23	- 14	
1000	12	/	14	- 23	1939	-21	12	- J 14	10	
1007	-11	- 5	5	18	1940	0 26	13	24	19	
1880	21	5	13	- 18	10/2	17	12	-6	10	
1800	21	11	-13	- 18	1942	24	11	-0	-9	
1890	- 57	-11	~15		1943	-24	-11	- 3	- 12	
1071	4	14	0	22	1944	0	- 5	12	5	
1092		- 14		- 23	1945	-11	_ , 。	-13	-0	
1093	-10	-10	- 22	-17	1940	-0	0	10	14	
1094	-13	- /	-9	-15	1947	9		-11	-12	
1895	0	-/	0 7	2	1948	10	1	10	0	
1890	-1	-4	2	10	1949	10	10	10	10	
1000	9	-1	- 3	-11	1900	- 18	- 19	27	- 18	
1898	-6	14	- 5	- 10	1951	-26	13	12	19	
1899	-20	$-\frac{1}{7}$	15	19	1952	18	0	- 5	0	
1900	19	1	0	1	1953	13	17	12	10	
1901	8	1	2	3	1954	4	-2		- 2	
1902	-2	7	19	15	1955	-13	<u>د –</u>	-21	- 24	
1903	24	6	-8	-12	1956	-20	-16	-15	11	

Table AIV. DT-cap: 1851–1934 estimates of Darwin minus Tahiti pressure based on the index of Wright (1975); 1935–1985 homogenized Darwin pressure anomaly minus Tahiti pressure anomaly, calculated monthly and averaged over 3-month seasons

	DJF	MAM	JJA	SON		DJF	MAM	JJA	SON	
1957	-6	8	6	13	1971	-22	-24	-8	-21	
1958	20	6	-4	6	1972	_7	8	19	17	
1959	22	-8	9	-7	1973	22	Õ	-13	-28	
1960	-3	- 8	-3	-7	1974	- 35	-20	-9	-10	
1961	-5	10	3	0	1975	1	-14	-26	-28	
1962	-21	4	3	-9	1976	-27	-8	14	2	
1963	0	-6	9	17	1977	1	15	23	21	
1964	13	-12	-12	-15	1978	29	1	-5	5	
1965	5	4	24	24	1979	1	4	-5	4	
1966	12	16	-1	3	1980	4	13	4	6	
1967	-15	-1	-4	Ī	1981	3	10	-11	— Ĩ	
1968	-4	-2^{-1}	-7	5	1982	-8	4	32	39	
1969	15	7	8	13	1983	61	23	7	-6	
1970	15	1	-2	-22	1984	-3	2	3	1	

Table AIV. (continued)

REFERENCES

- Angell, J. K. 1981. 'Comparison of variations in atmospheric quantities with sea surface temperature variations in the equatorial eastern Pacific'. Mon. Wea. Rev., 109, 230-243.
- Barnett, T. P. 1984. 'Long-term trends in surface temperature over the oceans'. Mon. Wea. Rev., 112, 303-312.
- Berlage, H. P. 1957. 'Fluctuations of the general atmospheric circulation of more than one year'. Med. en Verhandelingen, KNMI, 69. Blackmon, M. L., Geisler, J. E. and Pitcher, E. J. 1983. 'A GCM study of January climate anomaly patterns associated with interannual variation of equatorial Pacific SSTs'. J. Atmos. Sci., 40, 1410–1425.
- Cadet, D. L. 1985. 'The Southern Oscillation over the Indian Ocean'. J. Climatol., 5, 189-212.
- Folland, C. K., Parker, D. E. and Kates, F. E. 1984. 'Worldwide marine temperature fluctuations 1856-1981'. Nature, 310, 670-673.
- Hackert, E. C. and Hastenrath, S. 1986. 'Mechanisms of Java rainfall anomalies'. Mon. Wea. Rev., 114, 745-757.
- Jones, P. D., Wigley, T. M. L. and Wright, P. B. 1986. 'Global temperature variations between 1861 and 1984'. Nature, 322, 430-434. Kidson, E. 1925. 'Some periods in Australian weather'. Aust. Bur. Meteorol., Bull., 17.
- Latif, M. 1987. 'Tropical ocean circulation experiments'. J. Phys. Oceanogr., 17, 246-263.
- McBride, J. L. and Nicholls, N. 1983. 'Seasonal relationships between Australian rainfall and the Southern Oscillation'. *Mon. Wea. Rev.*, **111**, 1998–2004.
- Meisner, B. N. 1976. A Study of Hawaiian and Line Island Rainfall. University of Hawaii, Dept. Meteorol., UHMET, 83 pp.
- Newell, R. E., Selkirk, R. and Ebisuzaki, W. 1982. 'The Southern Oscillation; SST and wind relationships in a 100 year data set'. J. Climatol., 2, 357-373.
- Nicholls, N. 1988. 'More on early ENSOs; evidence from Australian documentary sources'. Bull. Am. Meteorol Soc., 69, 4-6.
- Pan, Y. H. and Oort, A. H. 1983. 'Global climate variations connected with SST anomalies in the eastern equatorial Pacific Ocean for the 1958-83 period'. Mon. Wea. Rev., 111, 1244-1258.
- Parker, D. E. 1983. 'Documentation of a Southern Oscillation index'. Meteorol. Mag., 112, 184-188.
- Quinn, W. H., Zopf, D. O., Short, K. S. and KuoYang, R. T. W. 1978. 'Historical trends and statistics of the Southern Oscillation, El Nino & Indonesian droughts'. Fish. Bull., 76, 663-678.
- Ropelewski, C. F. and Jones, P. D. 1987. 'An extension of the Tahiti-Darwin Southern Oscillation index'. Mon. Wea. Rev., 115, 2161-2165.
- Trenberth, K. E. and Shea, D. J. 1987. 'On the evolution of the Southern Oscillation'. Mon. Wea. Rev., 115, 3078-3096.
- Walker, G. T. and Bliss, E. W. 1932. 'World weather V'. Mem. R. Meteorol. Soc., 4, 53-84.
- Wallace, J. M. and Gutzler, D. S. 1981. 'Teleconnections in the geopotential height field during the Northern Hemisphere winter'. Mon. Wea. Rev., 109, 784–812.
- Weare, B. C. 1986. 'An extension of an El Nino index'. Mon. Wea. Rev., 114, 644-647.
- Woodruff, S. D., Slutz, R. J., Jenne, R. L. and Steurer, P. M. 1987. 'A comprehensive ocean-atmosphere data set'. Bull. Am. Meteorol. Soc., 68, 1239-1250.
- World Climate Program. 1984-present. Climate System Monitoring-Monthly Bulletin. WMO, Geneva.
- World Meteorological Organization. 1966. Climatic Change. WMO, Geneva, Tech. Note 79, 79 pp.
- Wright, P. B. 1975. An Index of the Southern Oscillation. University of East Anglia, Climate Res. Unit, CRU RP4.
- Wright, P. B. 1984. 'Relationships between indices of the Southern Oscillation'. Mon. Wea. Rev., 112, 1913-1919.
- Wright, P. B. 1986. 'Problems in the use of ship observations for the study of interdecadal climate changes'. Mon. Wea. Rev., 114, 1028-1034.
- Wright, P. B., Mitchell, T. P. and Wallace, J. M. 1985. Relationships between Surface Observations over the Global Oceans and the Southern Oscillation. Pacific Marine Environ. Lab., Seattle, ERL/NDAA Data Report, PMEL-12.